
Dissection of Datatypes for Generic Traversals

Kevin Ullmann (kru3@cornell.edu)

May 20, 2011

1 Introduction

The motivation for this paper is to bring together various works regarding traversals over recursive datatypes
in order to offer a more cohesive presentation on the methods for achieving both genericity in their construc-
tion and fine control during their execution. We present a synthesis of four papers by three authors, Gerard
Huet, Jeremy Gibbons, and Conor McBride, to demonstrate the usefulness and elegance of their approaches
for implementing and making use datatype traversals. We begin by exploring a structure that allows us to
represent an in progress traversal of a tree, and to move freely about that tree in any direction from our
current location. This structure is Huet’s Zipper [2]. We will then look at strategies for traversing generic
datatypes, namely the fold operation and origami programming. We will find that these techniques, though
powerful, are still lacking, in that they provide no ability to manipulate an in progress traversal. This fact
will motivate us to explore the derivative, which we will see partially achieves our goal by granting us the
ability to construct a one-hole context of arbitrary types. This derivative type captures the notion of a
frozen-in-place traversal. Unfortunately it does not allow us to move around the structure in consideration.
We will then conclude with a discussion of dissection, a powerful method that not only allows for generic
calculations of the type of an in-progress traversal, but also allows us to manipulate the original data struc-
ture and modify the effects of the traversal in real time. Dissection will provide us with first class access to
the layers of a stack representing the traversal, allowing us to move through recursive datatypes easily, while
maintaining fine control over their progress and effects.

2 The Zipper

We begin by presenting a type-specific example, which will motivate the development of more generic meth-
ods. A programmer often would like the ability to walk over a tree structure, modifying it along the way,
without having to recopy the entire structure with each edit, nor having to retrace steps to reach a previously
visited location. Huet’s zipper structure solves this problem by providing a representation of a tree and a
subtree at the current location of a traversal, allowing for movement from this location through the tree in
any direction [2].

We will consider a tree structure analogous to the structure examined by Huet in his paper on the zip-
per [2]. Our tree has items of type Obj only at the leaves, and each node has a variable number of children,
represented as a list of subtrees.

data tree = Leaf Obj | Section [tree]

The type of a path representing an in progress traversal is

data path = Top | Node [tree] ∗ path ∗ [tree]

where a Node(l, p, r) represents a traversal with its focus on a particular location in a tree, along with l a
list of that location’s elder siblings, r its younger siblings, and p its father path [2]. We can now define a
type representing the location itself.

1

data location = Loc tree ∗ path

See [2] for concrete examples of these types.

2.1 Moving Through the Tree

Having defined the structure of traversals, we can define primitives that allow us to move in any direction
around the tree. With the following implementations, each primitive, go left, go right, go down takes con-
stant time, and go up takes time proportional to the length of left [2]. We will present all examples in
Haskell.

go_left :: location → location

go_left (Loc t Top) = error ‘‘left of top’’

go_left (Loc t (Node (l:left) up right)) = Loc l (Node left up (t:right))

go_left (Loc t (Node [] up right)) = error ‘‘left of first’’

go_right :: location → location

go_right (Loc t Top) = error ‘‘right of top’’

go_right (Loc t (Node left up (r:right)) = Loc r (Node (t:left) up right)

go_right _ = error ‘‘right of last’’

go_up :: location → location

go_up (Loc t Top) = error ‘‘up of top’’

go_up (Loc t (Node left up right)) = Loc (Section (rev left)++(t:right)) up

go_down :: location → location

go_down (Loc (Leaf _) p) = error ‘‘down of leaf’’

go_down (Loc (Section t1:trees) p) = Loc t1 (Node [] p trees)

go_down _ = error ‘‘down of empty’’

Huet also gives an example function which makes use of these primitives [2]. His is example is the following
function, which computes the nth child of the current tree.

nth :: location → int → location

nth l 1 = go_down(l)

nth l n = if n > 0 then go_right(nth l (n-1))

else error ‘‘nth expects a positive integer’’

2.2 Mutating the Tree

Huet describes simple functions which make use of the zipper structure to cheaply and elegantly mutate the
tree. Here are his implementations of the insertion operation [2]. The insertion functions insert the given
tree in in a specific direction with regard to the current location, and leave the focus at that location after
the insertion is performed, except for insert down, which moves the focus to the tree that was just inserted.

insert_right :: location → tree → location

insert_right (Loc t Top) r = error ‘‘insert of top’’

insert_right (Loc t (Node left up right)) = Loc t (Node left up (r:right))

insert_left :: location → tree → location

insert_left (Loc t Top) l = error ‘‘insert of top’’

insert_left (Loc t (Node left up right)) = Loc t (Node (l:left) up right)

insert_down :: location → tree → location

2

insert_down (Loc (Leaf _) p) t1 = error ‘‘down of leaf’’

insert_down (Loc (Section sons) p) t1 = Loc t1 (Node [] p sons)

He further provides an implementation for the deletion operation. His implementation moves to the right if
possible, otherwise left, and up if the current subtree has no siblings [2].

delete :: location → location

delete (Loc t Top) = error ‘‘delete of top’’

delete (Loc t (Node left up r:right)) = Loc r Node(left up right)

delete (Loc t (Node l:left up [])) = Loc l Node(left up [])

delete (Loc t (Node [] up [])) = Loc (Section []) up

These functions give us the ability to traverse a tree in arbitrary directions. What’s more, we can modify
the tree at any position that we travel to. In effect, Huet’s zipper promotes the in progress traversal to a
first class object which we have direct control over. We would like to define traversals like this in a generic
way, to apply to any recursive structure, without having to implement functions like go up for each datatype
that we may wish to traverse. We would also like to maintain the fine control that is afforded us by first
class access to in progress traversals.

3 Genericity

Having seen the usefulness of a readily accessible traversal for trees, we ask “Can we define a generic structure
to represent traversals of arbitrary containers?” But before finding such a structure, we must be clear about
what it means for a structure to be generic.

3.1 Classification of Types

In a paper exploring genericity entitled “Datatype-Generic Programming”, Gibbons classifies various models
for generic programs based on the parameters abstracted out of their implementations. He separates classes
of genericity into those that are parameterized by value, by type, by function, by structure, by property, by
stage, and by shape [1]. A brief summary of these characterizations is given here.

• Genericity by value refers to typical functions that are not normally considered to be generic at all.
Take, for example, the function that raises x to the power y. This is a generic version of a function
that simply squares x, since the exponent has been abstracted from the value 2 to an arbitrary value.

• Genericity by type is equivalent to what is more commonly referred to by the term polymorphism, for
example an append function written for lists of arbitrary type α list.

• Genericity by function is analogous to genericity by value except that now the parameterized values
are actually functions. The map function is a perfect example of this type of genericity. Gibbons notes
that genericity by function should be treated separately from genericity by value because “Among
other things, it lets programmers express control structures within the language, rather than having
to extend the language.”[1] This concept of finer control will be an important motivation in forming
the dissection operator described later in this paper.

• Genericity by structure by structure and by property are related to passing in encapsulated modules
that may have hidden implementations of public interfaces. Examples of this type of genericity are
functions like sort which operate over lists containing elements that are required to have the property
of comparability.

• Genericity by stage refers to programs which construct or manipulate other programs [1], while gener-
icity by shape “is to parametrization by type as ‘by function’ is to ‘by value’.” In other words, shape
is just a higher order feature of a type, just as functions are simply higher order values.

3

For more precise definitions and further examples of these classifications of genericity in programs, see Gib-
bons paper on the subject [1].

It will be useful to explore an example of genericity by property. One such example is a function which
requires its arguments to belong to the type class Functor, that is, they have the property of implementing
a function fmap.

class Functor f where
fmap :: (a → b) → (f a → f b)

Note that we can easily make the List type class functorial:

instance Functor List where
fmap = mapL

where mapL is the standard map function for lists. We require that fmap has the following nice properties:

fmap (f ◦ g) = fmap f ◦ fmap g
fmap id = id

3.2 Origami

Let’s take a look at how to exploit genericity to implement traversals. One group of approaches to this
problem is known as “origami programming.” The term refers to designing each program to reflect the
structure of the datatype that it traverses [1], in order to take advantage of that structure. We have
mentioned programs like this already, namely the fmap operation. Note that each instance of fmap is
tailored to the structure being traversed, for example we defined the function for lists, but we can also
define fmap on binary trees, or trees of any arity. There are other, related operations, that also give us
the ability to manipulate and traverse generic containers. These other operations include fold, unfold and
build; in fact we will see that map is actually a special case of fold. These origami operations can be
used to perform what Gibbons refers to as “datatype-generic patterns of computation,” or more colloquially,
“origami programming.”

3.2.1 Origami Examples on Lists

Here we present some of Gibbons examples of origami programming on lists. We begin by explicitly defining
the types we are working with, and the foldL function:

data List a = Nil | Cons a (List a)

foldL :: b → (a → b → b) → List a → b

foldL e f Nil = e

foldL e f (Cons x xs) = f x (foldL e f xs)

The fold operation traverses a datatype, in our case a list containing elements of arbitrary type, and ac-
cumulates these elements using the provided function into a single value. Take, for example, the following
function, which calculates the sum of all elements.

sumL :: List Int → Int

sumL l = foldL 0 (λaλb a + b) l

The value accumulated by a fold can itself be a type with a higher order structure, for example another list.
With this notion in mind we can readily implement mapL from foldL:

mapL :: (a → b) → List a → List b

mapL f l = foldL Nil (λaλb Cons (f a) b) l

4

Instead of collapsing a data structure into a single value, we can also begin with a value and grow a structure.
Such an operation is an unfold, and it can be thought of as a dual operation to fold. Here is Gibbons
implementation of unfoldL, which takes a value and creates a list of values.

unfoldL :: (b → Bool) → (b → a) → (b → b) → b → List a

unfoldL p f g x =
if (p x) then Nil

else Cons (f x) (unfoldL p f g (g x))

While fold is familiar to functional programmers, unfoldL may seem like a strange operation. However, it
is quite powerful. The following function, again from Gibbons, takes an integer and returns its predecessors.

preds :: Int → List Int

preds = unfoldL (0 --) id pred where pred n = n -1

Combining an unfold with a fold allows for very concise definitions of powerful higher-order functions. An
operation which performs an unfold that produces a list to be immediately consumed by a subsequent fold
is called a hylomorphism. A hylomorphism operator for lists can be defined as follows.

hyloL :: (b → Bool) → (b → a) → (b → b) → c → (a → c → c) → b → c

hyloL p f g e h = (foldL e h) ◦ (unfoldL p f g)

Now we can write the factorial function in very compact form:

fact :: Int → Int

fact = hyloL (0 --) id pred 1 (∗)

Gibbons notes that with lazy evaluation the intermediate data structure is not computed all at once, which
suggests a better implementation for hyloL that does away with the intermediate structure altogether.

hyloL :: (b→ Bool) → (b → a) → (b → b) → c → (a → c → c) → b → c

hyloL p f g e h x =
if p x then e else h (f x) (hyloL p f g e h (g x))

For a more detailed discussion of these operations and of the Origami paradigms, see [1].

4 Derivatives of Types

The fold and unfold operations we have seen provide us with convenient methods for computation over
generic structures. Using origami programming, we can traverse structures of arbitrary type. Unfortunately,
these operations don’t allow the programmer first class access to the control structure itself. That is to say,
the programmer has no way to affect a fold in progress, other than to include any additional computations
or side effects within the implementation of the fold itself. But what does an in progress traversal look
like? In this section, we develop a method described by McBride in what may be his most influential work,
“The Derivative of a Regular Type is its Type of One-Hole Contexts” [3]. This method is the calculation of
partial derivatives of regular types, and provides a generic computation on a type description to construct
the type of its one-hole contexts. We will see that an inhabitant of this derivative type is analogous to a
frozen traversal over the original structure.

4.1 The Regular Types

Before we can begin taking partial derivatives of regular types, we must define the regular types themselves.
They are the typical types defined by sums and products. We will also require a definition for the set of type
variables. We will follow McBride’s definition of the infinite set Name, which can be thought of as the set

5

of all strings, and the set NmSeq which is a finite set of elements from Name [3]. If we have Σ ∈ NmSeq
we can define the set of regular types over Σ, denoted Reg Σ, inductively as follows [3].

Σ ∈ NmSeq
Reg Σ ∈ Set

x ∈ Σ

x ∈ Reg Σ

0 ∈ Reg Σ 1 ∈ Reg Σ

S, T ∈ Reg Σ

S + T ∈ Reg Σ

S, T ∈ Reg Σ

S × T ∈ Reg Σ

F ∈ Reg Σ;x

µx.F ∈ RegΣ

F ∈ Reg Σ;x S ∈ Reg Σ

F |x=S ∈ Reg Σ

T ∈ Reg Σ

Tx ∈ Reg Σ;x

We can think of the type 0 as being the empty type ∅, and 1 being the unit type (). The type µx.F is a
recursive type where the name x may appear in F . F |x= S is simply the type described by F where all
instances of x are assigned the type S. McBride calls this constructor “definition” and notes that it takes
the place of substitution [3]. Finally, Tx is the weakening constructor, which allows a regular type to be
lifted into a larger parent set.

McBride shows us how to recover the type Bool using our construction [3].

Bool ≡ 1 + 1

true ≡ inl ()

false ≡ inr ()

4.2 Partial Differentiation

Having defined the regular types, we can now define the partial differentiation operation that will give us
the type of their one-hole contexts. Let’s jump right into the rules for calculating this type.

x ∈ Σ T ∈ Reg Σ

∂xT ∈ Reg Σ

∂xx = 1 (1)

∂x(y\x) = 0 (where y\x means any y except x) (2)

∂x0 = 0 (3)

∂x(S + T) = ∂xS + ∂xT (4)

∂x1 = 0 (5)

∂x(S × T) = ∂xS × T + S × ∂xT (6)

∂x(µy.F) = µz.∂xF |y=µy.F z + ∂yF |y=µy.F z × z (7)

∂x(F |y=S) = ∂xF |y=S + ∂yF |y=S × ∂xS (8)

∂xTx = 0 (9)

∂xTy\x = ∂xT y (10)

Many of these rules follow the very same rules for partial differentiation that one learns in any introductory
calculus course. Rule 1 tells us there is only one place to find an x in an x, while rules 2,3,5, and 9 tell us
there are no x’s in: (Rule 2) a y that is not x, (Rule 3) the empty type, (Rule 5) unit, and (Rule 9) a type
T in a context where there are no x’s. Rule 4 tells us that if we are looking for an x in an S+T we can find
it in either the S or the T , while rule 6 tells us that if we are looking for an x in an S × T , we again find it
in one of them, but this time we must remember the other side to maintain the structure of the original type.

6

Rules 7 and 8 are analogous to the “chain rule” in calculus. Rule 7 gives us the one whole context of
a recursive type. It tells us that we either find an x at the top most node in the recursive type, or we
must “unroll” the type and look again, remembering the last level that we passed by. The rule for substi-
tution, rule 8, is quite similar. We either find an x in F , or we find an x in an S that occupied a y hole in F [3].

Let’s see the derivative at work. Consider the following type of binary tree.

data btree = Leaf | Node btree btree

We can encode this type as the regular (recursive) type µx.1 + x × x. What would a one-hole context of
this type be? We can either find a subtree on the left or the right, or if we are at a leaf, there is no hole
for a subtree. Thus we expect the type of the one-hole context (for a subtree) to be the choice of left or
right, along with the tree that we passed along. We can represent this choice by an instance of the Bool
type, which we have seen can be defined as 1 + 1, so the type of one-hole contexts for btree would be
(1 + 1)× btree ∼= 2× btree. Now let’s calculate the derivative and see what we get.

∂x(µx.1 + x× x) = µz.∂x(1 + x× x)|x=µx.(1 + x× x)z

+ ∂x(1 + x× x)|x=µx.1 + x× xz × z
∂x(1 + x× x)|x=µx.1 + x× x = 0 + (1× x+ x× 1)|x=µx.1 + x× x

∂x(µx.1 + x× x) = µz.0 + (1× x+ x× 1)|x=µx.(1 + x× x)z

+ 0 + (1× x+ x× 1)|x=µx.1 + x× xz × z
∼= µz.(0z + 2× xz + 2× xz × z)|x=µx.1 + x× x
∼= list 2× btree

Although this is a rather tedious calculation, we arrive at a wonderful result. The type of a one-hole context
for btrees is a (potentially empty) list of choices of left or right, along with the tree passed by at each step
down the tree! This structure is entirely analogous to the zipper that we’ve already seen, except that it was
calculated generically from the type definition of the tree!

McBride notes another interesting result. If we write Tn for the n-fold product of T ’s and n as the sum of n
1’s, then by induction on n we can show ∂xx

n ∼= n× xn−1, the same result we get from traditional calculus
[3]. This result tells us that the one-hole context for xn is an integer telling us which x the hole is at, along
with the other n− 1 x’s [3].

4.3 Plugging In

Given a one-hole context of some type T , ∂xT , and an x, we should be able to plug the x into the hole to
recover a T . Using McBride’s notation, we are looking for the operation {T l x}, such that if we have a c
of type T and a u of type x, then we can plug u into c, written infix as c {T l x} u, to recover a T . The
bracket notation tells us the types involved in the plugging in operation. McBride gives the following rules

7

for plugging in [3]:

1 {xl x} u = u

inl c {S + T l x} u = inl (c {S l x} u)

inr c {S + T l x} u = inr (c{T l x} u)

inl (c, t) {S × T l x} u = (c{S l x} u, t)
inr (s, c) {S × T l x} u = (s, c {T l x} u)

con (inl c) {µy.F l x} u = con (c{T l x}u)

con (inr (c, cs)) {µy.F l x} u = con (c {F l y} (cs {µy.F l x} u))

inl c {F |y=S l x} u = c {F l x} u
inr (cy, cx) {F |y=S l x} u = cy {F l y} (cx{S l x}u)

c {Ty\x l x} u = c {T l x} u

We have seen that c contains path information to the hole as well as the rest of the structure. Obviously,
when c = 0 we have no where to put an x, so we omit this case.

5 Dissection

The derivative gave us a powerful method for computing the types of one-hole contexts of arbitrary types,
generically from their type descriptions. We saw, by the example on btree, that an inhabitant of this type
can be thought of as a snapshot of an in-progress traversal over the base type. We developed a method
for taking a one-hole context and filling it to recover a structure of the original type, but had no ability to
traverse the structures which we were creating. We now move on to an even more powerful operator than
the derivative that builds on its usefulness to give us generic traversals over datatypes with first class access
to each level of the traversal. This operation is known as dissection. Following McBride’s approach in his
paper on the topic [4], we will present the dissection of polynomials (the regular types), and will see that
the operation further generalizes the notion of the derivative. From this operator we will be able not only
to recover one-hole contexts from containers, but also to move through the containers, maintaining access
to both the elements we have already passed over as well as to the elements we have yet to traverse.

5.1 Polynomial Functors

We will need to express the regular types from the previous section as functors. First let’s define some type
constructors. The following definitions are all taken from McBride [3].

data K1 a x = K1 a

data Id x = Id x

data (p +1 q) x = L1 (p x) | R1 (q x)

data (p ×1 q) x = (p x,1 q x)

These constructors give us constants, single elements, sums, and products, respectively. We define the unit
type to be

type 11 = K1 ()

and the empty type simply as

data Zero

The subscripts indicate that these are different constructors from the bifunctors that we will see soon. The
polynomial constructors we have just defined are all functorial, since we can define the requisite fmap
function for each instance as follows:

8

instance Functor (K1 a) where fmap f (K1 a) = K1 a

instance Functor Id where fmap f (Id s) = Id (f s)

instance (Functor p, Functor q) ⇒ Functor (p +1 q) where
fmap f (L1 p) = L1 (fmap f p)

fmap f (R1 q) = R1 (fmap f q)

instance (Functor p, Functor q) ⇒ Functor (p ×1 q) where
fmap f (p,1 q) = (fmap f p,1 fmap f q)

These definitions are sufficient to ensure that any polynomial built out of the given constructors is automat-
ically functorial as well.

Before moving on to the polynomial bifunctors, which will be necessary for distinguishing elements that
have been passed over from those which are yet to come, let’s consider an example datatype that can be
expressed as a fixpoint of the polynomial functors. The following datatype can be used to represent arbitrary
logical propositions.

data prop = true | false | Not prop | Or prop prop

We can express this datatype using the µ notation from the previous section, but instead we will use our
polynomial functors. We construct the datatype in a similar manner to McBride’s construction of the Expr
type [4]. First we define a type PropP that is a container for the immediate subterms of the proposition.

data PropP = K1 Bool +1 (Id +1 Id × Id)

ValP b = L1 (K1 b)

NotP p = R1 (L1 (Id p))

OrP p1 p2 = R1 (R1 (Id p1,1 Id p2))

We then use the µ constructor to tie the recursive not, giving us the true type for prop

data Prop = µ PropP

Val b = In (ValP b)

Not p = In (NotP p)

Or p1 p2 = In (OrP p1 p2)

where the µ constructor is a recursive type defined as

data µ p = In (p (µ p))

Again following McBride’s Expr example [4], we can build a machine to evaluate the truth assignment of a
given proposition. Our machine will traverse the structure defined by Prop, at each step considering either
an expression to decompose, or a value to use.

eval :: Prop → Bool

eval p = load p []

load :: Prop → Stack → Bool

load (Val b) stk = unload b stk

load (Not p) stk = load p (L (L 1) : stk)

load (Or p1 p2) stk = load p1 (L (R p2) : stk)

unload :: Bool → Stack → Bool

unload b [] = b

unload b (L (L 1) : stk) = unload (-b) stk

unload b (L (R p2) : stk) = load p2 (R b : stk)

unload b1 (R b2 : stk) = unload (b1 | | b2) stk

Each layer of the stack is a dissection of a Prop. The layer can be one of three things. It can be an R b,
in which case we are to the right of a value, an L (L 1) which means that we are exploring the proposition

9

inside of a Not, or an L (R p), which means that we went to the left of an Or, which had a proposition p on
the right. We will now see how to construct this sort of traversal for generic types.

5.2 Polynomial Bifunctors

The polynomial bifunctors are analogous to the polynomial functors, except they have two parameters instead
of one.

data K2 a x y = K2 a

data Fst x y = Fst x

data Snd x y = Snd y

data (p +2 q) x y = L2 (p x y) | R2 (q x y)

data (p ×2 q) x y = (p x y,2 q x y)

type 12 = K2 ()

type 02 = K2 Zero

Now instead of fmap, we have bimap, which requires one function for each parameter in the bifunctor.

class Bifunctor p where bimap :: (s1 → t1) → (s2 → t2) → p s1 s2 → p t1 t2
instance Bifunctor (K2 a) where bimap f g (K2 a) = K2 a

instance Bifunctor Fst where bimap f g (Fst x) = Fst (f x)

instance Bifunctor Snd where bimap f g (Snd y) = Snd (g y)

instance (Bifunctor p, Bifunctor q) ⇒ Bifunctor (p +2 q) where
bimap f g (L2 p) = L2 (bimap f g p)

bimap f g (R2 q) = R2 (bimap f g q)

instance (Bifunctor p, Bifunctor q) ⇒ B if untor (p ×2 q) where
bimap f g (p,2 q) = (bimap f g p,2 bimap f g q)

The polynomial functors are containers of a single type of element, while the polynomial bifunctors contain
two types of elements. McBride refers to these as “clowns” and “jokers” respectively [4], but we shall refer to
them as “formers” and “latters”, since in an in order traversal all of the “formers” come before the current
location, while the “latters” have yet to be inspected. McBride defines two operators for raising functors to
bifunctors. We include them here for completeness but will not dwell on their implementation. The first,
which McBride calls ‘all clowns’ [4] lifts a functor to a bifunctor whose elements are all formers, and the
second lifts a functor to a bifunctor with all latters. These are defined as follows:

data Fp c j = F(p c)

instance Functor f ⇒ Bifunctor Ff where bimap f g (F pc) = F(fmap f pc)

data Tp c j = T(p j)

instance Functor f ⇒ Bifunctor (Tf) where bimap f g (T pj) = T(fmap g pj)

We have that FId ∼= Fst and TId ∼= Snd.

The dissection of a functor p, ∆p, lifts p to the bifunctor which represents both a position in p and the
formers and latters with regard to this position. We can define ∆p case by case. Constants have no positions
for elements of any type, and so there is no way to dissect them [4].

∆(K1 a) = 02

The Id functor can store only one element at one position.

∆Id = 12

Dissecting a sum p+1 q gives us either a dissected p or dissected q [4].

∆(p +1 q) = ∆p +2 ∆q

10

Dissecting a pair gives us either a dissected left component with all latters to the right, or a dissected right
component with all formers to the left [4].

∆(p ×1 q) = ∆p ×2 Tq +2 Fp ×2 ∆q

Let’s dissect our proposition type:

∆(PropP) = ∆(K1 Bool +1 (Id+1 Id× Id))

= 02 +2 12 +2 12 × TId+2 FId× 12

We see that applying this bifunctor to Bool and Prop gives us

∆(PropP) Bool Prop ∼= unit+ Prop+Bool

thus this expression tells us that dissecting a PropP gives us either a unit, a bool, or a proposition. We have
recovered the exact type of the stack layers in the evaluation machine!

5.3 Moving Around a Dissection

So far, the dissection operator doesn’t seem much more powerful than the derivative operator from earlier.
However, unlike with the derivative, we can easily define operations that use dissections to move throughout
a datatype. Consider the function right which takes either a container or dissected container, and moves
one position to the right. The function would have the signature

right :: p j + (∆p c j, c) → (j, ∆p c j) + p c

This signature represents the different situations we can encounter when attempting to move right. We can
either start all the way at left of the structure, in which case the elements are all latters, or we are already
in the middle of a traversal. If we are in the middle of a traversal, then we we have a dissected p, and a
former to place in the hole when we move on. After the move, we are either left with a dissected p and a
latter that came out of the hole at our current location, or we have reached the end of the structure, and
all the elements are formers. For our purposes, it is sufficient to note that this function (and similarly the
left function) can be implemented. For a detailed description of the implementation see McBride’s paper
on dissection [4].

We can use the dissection of p to make its fmap tail-recursive. [4]

tmap :: ∆p 7→ q ⇒ (s → t) → p s → p t

tmap f ps = continue (right (L ps)) where
continue (L (s,pd)) = continue (right (R (pd, f s)))

continue (R pt) = pt

where the requirement ∆p 7→ q stipulates that we can take a derivate of p and ∆p ∼= q.

5.4 Tail Recursive Catamorphism

We now have the tools necessary to implement a tail recursive catamorphism, like our evaluation machine,
generically for any polynomial functor. Given a p-algebra, φ :: p v → v, we traverse a µp depth first, left to
right, to compute a final value v. At any point in the traversal, we’ll be processing a node in the middle of
processing its parent node, in the middle of processing its parent node, and so on. Because we’re moving
left to right, all the nodes to the left will have been transformed into values, while the nodes on the right
still contain unprocessed µp’s. Thus, our stack is a list of dissections [∆p v (µ p)] [4]. We can begin the
procedure just like we began the evaluation machine for propositions:

tcata :: ∆p 7→ q ⇒ (p v → v) → µ p → v

tcata φ t = load φ t []

11

To load a node we must dissect it to get at its subnodes, we then enter the node from the far left to begin
processing it.

load :: ∆p 7→ q ⇒ (p v → v) → µ p → [q v (µ p)] → v

load φ (In pt) stk = next φ (right (L pt)) stk

We may step into another subnode, which means we must dissect this one, pushing the previous dissection
onto the stack to be continued later in the traversal. If we’ve reached the end of the node, we have all the
values for its subnode, so we can apply φ and unload.

next :: ∆p 7→ q ⇒ (p v → v) → (µ p, q v (µ p)) + p v → [q v (µ p)] → v

next φ (L (t,pd)) stk = load φ t (pd : stk)

next φ (R pv) stk = unload φ (φ pv) stk

After obtaining the value for a node, we can push the value onto the stack and resume our traversal of the
parent node. If the stack is empty, we have the value for the root, so we can stop.

unload :: ∆p 7→ q ⇒ (p v → v) → v → [q v (µ p)] → v

unload φ v (pd : stk) = next φ (right (R (pd,v))) stk

unload φ v [] = v

(Note that the definitions and implementations of load, next, and unload are all thanks to McBride as well
[4].)

We can now easily implement our previous eval machine

eval :: µ PropP → Bool

eval = tcata φ where
φ (ValP b) = b

φ (NotP b) = -b

φ (OrP b1 b2) = b1 | | b2

5.5 Diagonal Dissection and the Zipper

We can recover the derivative of a datatype using its dissection via the method of diagonal dissection. That
is to say, performing a dissection where there is no distinction between formers and latters: ∂p x = ∆p x x.
We can also recover the the plugging in operation. The following implementation is due to McBride [4], the
operative functor is shown in a comment.

plug :: x → ∆p x x → p x

plug{-K1 a-} x (K2 z) = error ‘‘constants have no holes’’

plug{-Id-} x (K2 ()) = Id x

plug{-p +1 q-} x (L2 pd) = L1 (plug{-p-} x pd)

plug{-p +1 q-} x (R2 qd) = R1 (plug{-q-} x qd)

plug{-p ×1 q} x (L2 (pd,2 Tqx)) = (plug{-p-} x pd,1 qx)

plug{-p ×1 q} x (R2 (Fpx,2 qd)) = (px,1 plug{-q-} x qd)

McBride also shows us how to recover Huet’s zipper operations for a tree of type µp where p is a dissectable
functor [4].

zUp,zDown,zLeft,zRight::∆p 7→ q ⇒ (µ p, [q (µ p) (µ p)]) → Maybe (µ p, [q (µ p) (µ p)])

where Maybe x = Nothing | Just x.

zUp (t,[]) = Nothing

zUp (t,pd:pds) = Just (In (plug{-p-} t pd), pds)

12

zDown (In pt,pds) = case right{-p-} (L pt) of

L (t,pd) → Just (t,pd:pds)

R _ → Nothing

zRight (t,[]) = Nothing

zRight (t::µ p,pd:pds) = case right{-p-} (R (pd,t)) of

L (t’,pd’) → Just (t’, pd’:pds)

R (_:: p (µ p)) → Nothing

McBride notes that Haskell’s type checker needs assistance in the definition of zRight, for his explanation
of this issue see his paper on dissection [4]. For us this peculiarity in the implementation is not important.

6 Discussion

In attempting to construct generic, manipulable traversals for arbitrary datatypes, we have seen four tech-
niques with different advantages and disadvantages. Thanks to Huet [2], we found a structure perfectly
suited to traversing tree structures. In effect, Huet had found one case of McBride’s dissection operation.
The obvious disadvantage of the zipper is that it lacks genericity. If one wanted to follow Huet’s example
for other structures, they would be forced to reimplement something similar to the zipper with regard to the
structure in consideration. However, the zipper has the advantage of being efficient and easy to understand
and extend. Future work on defining structures to represent traversals for specific datatypes could be useful
for developing software, but we think that the generic approach is more interesting and will yield richer
results.

For more generic traversals, we turned to Gibbons and origami programming. The techniques and
functions associated with origami programming give us the ability to perform most of the transformations
on typical datatypes like trees and lists that we might want. Many common patterns of computation on
these structures can be expressed in a fold, or captured by a hylomorphism. Furthermore, although we did
not discuss this point in much detail, most of these operations can also be defined in a generic way, obviating
the need to reimplement functions for various datatypes. These approaches are quite useful, and in fact in
his paper, Gibbons goes into detail on four different styles of origami programming and their uses [1]. Our
main concern with origami programming and generic programming of a similar nature was that we have no
access to the in-progress traversals. We are able to efficiently walk over structures to perform computations
on them, but we cannot easily stop the traversals at arbitrary points to inspect or modify the data structure.

To begin tackling the issue of manipulating in-progress traversals, we examined the derivative of a
datatype. The derivative gives us the type of one-hole contexts for its parent type. We found that this
type exactly corresponded to the type of a single layer of the stack representing an in progress traversal. We
were able to use this technique to mimic some of the functionality provided by the zipper; the plugging-in
operation gave us a generic analog to Huet’s insertion functions [2, 3]. However, the fact that we could not
easily move around a data structure using the derivative lead us to its more powerful brother, dissection.

Dissection affords us nearly everything that we were looking for. Using dissection we can traverse arbitrary
datatypes, but we also have first class access to the in-progress traversal. This allows us to modify the
structure and the computation at any point. What’s more, the generic nature of the computation of the
dissection means that we can do this for any container types that can be expressed as polynomial bifunctors.
This includes quite a large class of types. Further work in this area could yield a similar technique for
even more complex types, such as trees containing lists, or other nested container types. More examples
of the uses of dissection are also worth exploring, as we have seen the construction in theory but not in
practice. McBride gives a few nice examples in his paper on the topic [4] but they provide only a quick look
at what dissection can offer us. It would also be interesting to see how these techniques could be applied
to the problem of data synchronization. Data synchronization often requires application specific methods,
but dissection and even origami programming may help to generalize these techniques. It is also likely that
more analogues from traditional calculus that apply to type theory could be discovered. McBride mentions
this possibility, saying “one only has to open one’s old school textbooks almost at random and ask ‘what

13

does this mean for datatypes?’ ” [3]. Topics like the second derivative and the total (as opposed to partial
derivative) may provide further insight into type theory and generic traversals.

We have seen that by exploiting types and manipulating type descriptions, we can create very powerful
and structured generic programs, and we hope to have stimulated an interest in generic programming and
calculations on types.

References

[1] Jeremy Gibbons. Datatype-generic programming. In Roland Backhouse, Jeremy Gibbons, Ralf Hinze,
and Johan Jeuring, editors, Spring School on Datatype-Generic Programming, volume 4719 of Lecture
Notes in Computer Science. Springer-Verlag, 2007.

[2] Gérard P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.

[3] Conor McBride. The derivative of a regular type is its type of one-hole contexts.

[4] Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissecting data structures. In
POPL, 2008.

14

